SiC(炭化ケイ素)インゴット価格の高騰

SiC(炭化ケイ素)はそのほとんどが中国で製造されています。このSiCの製煉はアルミニウムの製煉の次に大量に電力を消費します。

現在中国は石炭火力発電が全体の70%近くを占めますが、中国政府がコロナ禍の経済立て直し優先から、急に環境対策に舵を切った為、火力発電所の発電が大幅に抑制され、中国全体で深刻な電力不足に陥っております。

電力を大量に消費するSiC製煉工場の強制的な操業停止や生産抑制で、中国全体で半分以下の生産量になった結果、SiCインゴット価格がそれまでの約2倍に高騰し、結果SiC耐火物の原料となる粉砕・整粒されたSiC原料もかなり値上がりするという情報です。

尚、SiC(炭化ケイ素)インゴットの詳しい製造工程は下記ご参照ください。

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート1

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート2

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート3

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート4

 

Si-SiC製積み上げ式丸支柱

SiCビーム用のSi-SiC製積み上げ式丸支柱です。ムライト質での同形状丸支柱からのグレードアップ版です。

サイズは大小2種類あり、大=高さ140mm、小=高さ70mm でそれぞれの組み合わせも可能です(下の写真は大2個+小1個で組み合わせの関係で高さは320mmになります)。

ムライト製に比べ、肉薄にできるので軽量になり、材質的な比熱も低く、炉の燃費の改善になるのと同時に、ムライト製では長年の使用やハンドリングで角の欠けが発生したりしますが、Si-SiC製の場合ですとそれは各段におきにくくなります。

Si-SiC製積み上げ式小型支柱

SiCビーム用のSi-SiC製積み上げ式小型支柱です。

写真は縦横40x40mmサイズのSi-SiCビームを支えています。

支柱の1段目は高さ75mm、積み上げた2段目は高さ175mmとなります。安定性の観点からは3個積み上げるくらいまでが良いかと思います。

  • 高さが変えられる
  • 小型サイズなので面積を取らない
  • ムライト製支柱に比べ、軽量で比熱も高い為、炉の燃費に貢献する

というのがこのSi-SiC支柱のポイントです。

低温酸化対策品SiC耐火物

非酸化物であるSiC耐火物にとっては、酸化によるSiCの劣化が耐火物の寿命にかかわる一つの大きな要因です。特に炉内温度約700~1000℃弱は一番酸化がきつい温度帯で低温酸化領域と言われており、例えば1300℃での焼成よりも700~1000℃弱での焼成の方がSiC耐火物にとっては過酷な条件となります。

下のバーナースリーブはこの低温酸化に対して強い特別な配合で作られたSiC耐火物です。

表面にきらっとした茶色い色が析出しており、見た目的にはあまりきれいとは言えないのですが、これが低温酸化対策品SiC耐火物です。

製造の焼成工程中の微妙な雰囲気の差によって茶色かったりそうでなかったりの色の差は生まれますが、性能的には均一で同じです。

尚、これを1200℃以上の高温焼成で使用すると、表面の色がべーパーして移ったり、配合成分の一部が溶け出したりしますのであまりお勧めできません。例えば1200℃以上の使用条件の炉床板では別の耐酸化性SiC耐火物もございます。

アルミナポーラス質の色見栓

アルミナ質ポーラスの色見栓です。
写真の物は、はめ合い部φ49mm(色見穴φ50mm)、全長80mmです。

iromisen

一般的には断熱煉瓦を切削加工したものが多く使われますが、それらに比べ耐久性がありまた出し入れのたびに削れることもありません。
下の写真は断熱煉瓦から切削加工したもので、かなりボロボロになっています。
4課色見栓_現行
つまみ付きなので、奥まった色見穴にも使用できます。
4課色見栓_新

プレス加工後旋盤加工しますので、ご希望の寸法で制作可能です。
(受注生産のため最低ご注文数量の設定がございますので別途お問い合わせ下さい)

SiC棚板のSiC含有%比較

酸化物結合SiC耐火物の性能比較の一つの指標はSiC含有%です。

下は他社販売のSiC棚板です。K company SiC sample一部分を切り取り粉砕し分析にかけたところ、SiC%は88.2% でした。SiC content K company一方、以前弊社のSiCセッターを同じ機関で分析した結果は90.4%でした。SiC content Daikoこの%差の原因は元原料の品質(SiC%)の差である可能性があります。以前のブログ記事「酸化によるSiC%の減少」でもご説明した通り、劣化してゆくとSiC%が減ってゆき、棚板として大体使わなくなるくらいに劣化したSiC棚板のSiC%は85.4%でした。

いかに良質のSiC原料を安定的に使用しているかが高性能/長寿命の最初のポイントです。

 

再結晶SiCの焼成雰囲気と使用可能温度

再結晶SiCの大気雰囲気での最高使用温度は1,650℃ですが、酸素の無い雰囲気焼成ではそれ以上の温度でも使用可能です。

SiC99%の再結晶SiCが1,650℃を超えてくると使えない理由はその温度以上ではSiCと酸素が反応してしまいシリカの泡が生成されてしまうからです。一方、無酸素雰囲気での焼成ですとその反応は起きず、2000℃近くで使われている例もあります。

下の写真は無酸素雰囲気焼成で使用されている、再結晶SiCの外径φ450 x 内径φ405 x 高さ200mm の枠です。ReSiC muffle

肉厚は22.5mmあり1個当たりの重量は16.3kg です(カサ比重=2.7)。再結晶SiCですと肉厚で比較的大きな製品も対応可能です。

再結晶SiCリングセッター

再結晶SiCの特徴は最高使用温度が1,650℃と他のSiCよりも高い温度で使用できる点です。下の写真は再結晶SiCセッターφ240 x 6t の片面にアルミナコーティングをしたものです。ReSiC Plate Φ240x6t backReSiC Plate Φ240x6t

テストの結果ドイツの老舗メーカー様に継続納入が決定しました。1400℃焼成のIn/Out 約5時間のローラーハースで使われます。真ん中の穴は製品中央部も十分に加熱し焼きむらを防ぐ目的です。再結晶SiCは気孔率約15%、表面はやすりの様な感じで比較的ざらついていますので、コーティングの食いつきも良いです。

Si-SiC耐火物の熱伝導率

Si-SiC保護管
Si-SiC保護管

熱伝導率とはどれだけ熱が移動しやすいかを表す数値で、数字が大きいほど熱が移動しやすいという意味です。その単位はW/m・K(ワット パー メートル ケルビン)が一般的であり、 1mの物体を介して1ケルビン温度差=1℃の温度差がある場合にその1mの厚さをどれだけの熱エネルギー量(W)が移動するかという意味です。尚、温度によって熱伝導率は変化しますが、温度が上がるにしたがって熱電度率が下がる物・上がる物・ほとんど変わらない物があります。

下の表はSi-SiC(反応焼結SiC)・焼結体アルミナ・ステンレスSUS304の各温度での熱伝導率の比較です。

Heat conductivity table

温度による熱伝導率の変化の仕方は異なりますが、焼結体アルミナ・ステンレスよりもSi-SiCの方が熱伝導率が良いという事ははっきり判ります。実際に炉内で使われるムライト・レンガ質の耐火物等ですと更に焼結体アルミナの1/4~1/10程度しかなかったりしますので、Si-SiC耐火物の熱伝導率はかなり高い事が見て取れます。