Si-SiC製積み上げ式丸支柱

SiCビーム用のSi-SiC製積み上げ式丸支柱です。ムライト質での同形状丸支柱からのグレードアップ版です。

サイズは大小2種類あり、大=高さ140mm、小=高さ70mm でそれぞれの組み合わせも可能です(下の写真は大2個+小1個で組み合わせの関係で高さは320mmになります)。

ムライト製に比べ、肉薄にできるので軽量になり、材質的な比熱も低く、炉の燃費の改善になるのと同時に、ムライト製では長年の使用やハンドリングで角の欠けが発生したりしますが、Si-SiC製の場合ですとそれは各段におきにくくなります。

Si-SiC製積み上げ式小型支柱

SiCビーム用のSi-SiC製積み上げ式小型支柱です。

写真は縦横40x40mmサイズのSi-SiCビームを支えています。

支柱の1段目は高さ75mm、積み上げた2段目は高さ175mmとなります。安定性の観点からは3個積み上げるくらいまでが良いかと思います。

  • 高さが変えられる
  • 小型サイズなので面積を取らない
  • ムライト製支柱に比べ、軽量で比熱も高い為、炉の燃費に貢献する

というのがこのSi-SiC支柱のポイントです。

低温酸化対策品SiC耐火物

非酸化物であるSiC耐火物にとっては、酸化によるSiCの劣化が耐火物の寿命にかかわる一つの大きな要因です。特に炉内温度約700~1000℃弱は一番酸化がきつい温度帯で低温酸化領域と言われており、例えば1300℃での焼成よりも700~1000℃弱での焼成の方がSiC耐火物にとっては過酷な条件となります。

下のバーナースリーブはこの低温酸化に対して強い特別な配合で作られたSiC耐火物です。

表面にきらっとした茶色い色が析出しており、見た目的にはあまりきれいとは言えないのですが、これが低温酸化対策品SiC耐火物です。

製造の焼成工程中の微妙な雰囲気の差によって茶色かったりそうでなかったりの色の差は生まれますが、性能的には均一で同じです。

尚、これを1200℃以上の高温焼成で使用すると、表面の色がべーパーして移ったり、配合成分の一部が溶け出したりしますのであまりお勧めできません。例えば1200℃以上の使用条件の炉床板では別の耐酸化性SiC耐火物もございます。

SiC棚板のSiC含有%比較

酸化物結合SiC耐火物の性能比較の一つの指標はSiC含有%です。

下は他社販売のSiC棚板です。K company SiC sample一部分を切り取り粉砕し分析にかけたところ、SiC%は88.2% でした。SiC content K company一方、以前弊社のSiCセッターを同じ機関で分析した結果は90.4%でした。SiC content Daikoこの%差の原因は元原料の品質(SiC%)の差である可能性があります。以前のブログ記事「酸化によるSiC%の減少」でもご説明した通り、劣化してゆくとSiC%が減ってゆき、棚板として大体使わなくなるくらいに劣化したSiC棚板のSiC%は85.4%でした。

いかに良質のSiC原料を安定的に使用しているかが高性能/長寿命の最初のポイントです。

 

再結晶SiCの焼成雰囲気と使用可能温度

再結晶SiCの大気雰囲気での最高使用温度は1,650℃ですが、酸素の無い雰囲気焼成ではそれ以上の温度でも使用可能です。

SiC99%の再結晶SiCが1,650℃を超えてくると使えない理由はその温度以上ではSiCと酸素が反応してしまいシリカの泡が生成されてしまうからです。一方、無酸素雰囲気での焼成ですとその反応は起きず、2000℃近くで使われている例もあります。

下の写真は無酸素雰囲気焼成で使用されている、再結晶SiCの外径φ450 x 内径φ405 x 高さ200mm の枠です。ReSiC muffle

肉厚は22.5mmあり1個当たりの重量は16.3kg です(カサ比重=2.7)。再結晶SiCですと肉厚で比較的大きな製品も対応可能です。

Si-SiC耐火物の熱伝導率

Si-SiC保護管
Si-SiC保護管

熱伝導率とはどれだけ熱が移動しやすいかを表す数値で、数字が大きいほど熱が移動しやすいという意味です。その単位はW/m・K(ワット パー メートル ケルビン)が一般的であり、 1mの物体を介して1ケルビン温度差=1℃の温度差がある場合にその1mの厚さをどれだけの熱エネルギー量(W)が移動するかという意味です。尚、温度によって熱伝導率は変化しますが、温度が上がるにしたがって熱電度率が下がる物・上がる物・ほとんど変わらない物があります。

下の表はSi-SiC(反応焼結SiC)・焼結体アルミナ・ステンレスSUS304の各温度での熱伝導率の比較です。

Heat conductivity table

温度による熱伝導率の変化の仕方は異なりますが、焼結体アルミナ・ステンレスよりもSi-SiCの方が熱伝導率が良いという事ははっきり判ります。実際に炉内で使われるムライト・レンガ質の耐火物等ですと更に焼結体アルミナの1/4~1/10程度しかなかったりしますので、Si-SiC耐火物の熱伝導率はかなり高い事が見て取れます。

SiC炉床板

プッシャー炉のSiC炉床板(レール)です。SiC(炭化ケイ素)は耐摩耗性が高く、上を台板が押されて滑ってゆくこの炉床板にはSiCが適しております。

SiC pussher kiln hearth

SiCの種類としては、酸化物結合(シリカ結合)SiCで、基本的には通常のSiC棚板等と同じですが、炉床板の場合は炉の中に設置され続ける為、SiCが一番酸化されやすい約700~1000℃の温度帯で長時間炉に入っていても酸化されにく、また高温での耐摩耗性にも優れた特別な配合になっております。

酸化によるSiC棚板のSiC(炭化ケイ素)%減少

SiC棚板等のSiC耐火物は大気雰囲気で焼成されると徐々に酸化されて行き、反りや膨張が発生し本来の強度も落ちてゆきます。SiC(炭化ケイ素)が酸化されるとSiO2(シリカ)が生成されSiCの%は減ってゆきますが、酸化の程度の違いによって実際にどのくらいSiC%が減っているのかを分析しました。

下の写真のSiC棚板はかなり使用され裏面にシリカも多く出ており棚板として使うにはほぼ限界に近い程度の物です*ここではSiC棚板(反り中)とします。warped SiC

下の写真は本来は棚板ですが、煙道カバーとしてカートップに設置され続け、結果激しく酸化してしまい、これ以上酸化された状態のSiCはめったに見られないというくらいの程度の物です*ここではSiC棚板(反り大)とします。heavily warped SiC(反り大)は近くで見ると判る通り、SiC本来の光沢も消えガサガサした感じです。
heavily warped SiC UP

この2つのSiC棚板を分析用に細かく砕いたのが下です。Grinded 2 samples SiC comparison

色合いと光沢具合の違いが良くわかるかと思います。

それぞれのSiC%をセラミックス試験場で分析した結果が下です。SiC % analysis results

SiC棚板の新品はSiC=約90%ですので、棚板として寿命の限界程度に酸化した物(反り中)がSiC=85.4%、それ以上に極端に酸化された物がSiC=81.7%という結果になり、見た目なりにSiC%が減少しているという結果になりました。

SiC耐火物の水蒸気による腐食

SiC(炭化ケイ素)耐火物は炉内に水蒸気がある環境下ですと、激しく腐食してしまいます。SiC corrosion

SiCが元の濃いグレー色から薄い白っぽい色になり、反ったり割れたり膨張したりし、強度も著しく落ち、固いSiC耐火物がボソボソになってしまいます。SiC corrosion UP

これは水蒸気によって粒界腐食が起き、SiC (炭化ケイ素)とH2O(水) が反応し、SiO2(シリカ)やSi(OH)4(ケイ酸)等が生成されるメカニズムの様です。実験によると300℃でもSiCの粒界腐食を起こすとの事ですので、製品の釉薬が十分に乾ききっていない場合、SiC棚板にアルミナコーティングを塗った後十分に乾ききっていない場合、又は連続熱処理炉で冷却水が炉内に侵入してしまうような場合は、明らかにSiC耐火物に対して悪影響を及ぼしますので注意が必要です。

参考資料「材料と環境49(11)2000 P706~709 300℃の水蒸気中における炭化ケイ素焼結体の腐食挙動」https://www.jstage.jst.go.jp/article/jcorr1991/49/11/49_11_706/_pdf