精密鋳造用ジルコニアるつぼ

ニッケル基超合金精密鋳造専用のジルコニアるつぼの紹介です。

ジルコニアるつぼφ150x250H a

航空機エンジン・ガスタービン用ニッケル基超合金の精密鋳造にはこの金属との反応性の点から、マグネシア安定化(MgOスタビライザーの)ジルコニアるつぼの使用が不可欠です。

これら精密鋳造でネックになるのが、るつぼに付着した前ショットの残留金属や、るつぼ母材自体のコンタミ(異物混入)であり、溶融金属のるつぼへの浸透や溶融金属によるるつぼのエロージョン(腐食)が原因です。

当社販売のジルコニアるつぼは(プレス成形品と違い)鋳込み成形品であるが故に、るつぼ表面が非常に滑らかできめ細かく、溶融金属との濡れ性が悪いおかげで溶融金属のるつぼへの付着や、るつぼのエロージョン(腐食)が起こり難く、即ち最も嫌われるコンタミの発生を抑えられます。

ジルコニアるつぼφ150x250H b

ジルコニアるつぼφ150x250H c

あるケースでは海外製某Z社のプレス成形品ジルコニアるつぼよりも約2倍ショット数が伸びたという例もございます。

水分によるアルミナコーティングの剥がれ

SiC棚板に通常施されているアルミナコーティングは、新品時は有機バインダーで板に軽く引っ付いているだけで、約1,100℃以上に焼成されて初めて板にしっかり焼付くような配合になっております。

ですので1回目の焼成では特にそうですが、焼成時に水分が焼成物と棚板との間にこもってしまうような状態ですと、アルミナコーティングが棚板に焼付く前に水蒸気によってコーティングがふやけて浮き、剥がれてしまう場合があります。

アルミナコーティング水分めくれ2

このSiC棚板は、食器の焼成で食器底部分のハマ(高台)の内側に乾燥しきっていない釉薬の水分が閉じ込められ水蒸気となりコーティングが浮いて剥がれてしまった例です。

アルミナコーティング水分めくれ1

焼成時には製品が十分乾燥しきっているのを確認しないと、このようにコーティングに悪影響を及ぼす場合があり、特にSiC棚板1回目の焼成時には顕著に影響が現れますが、2回目以降の焼成でも、こもった水分によりアルミナコーティングが剥がれる場合はありますので注意が必要です。

アルミナ・ムライト質耐火物の熱間荷重による収縮

下の写真は使用された、アルミナ約60~70%のアルミナ・ムライト質 L型支柱です。

L型支柱サイズばらつき

元は同じ高さのL型支柱でしたが、荷重のたくさんかかる箇所で多く使われた物と、そうでない物・新し目の物とはこれだけ高さに差が出てしまっています。

アルミナ・ムライト質の白物耐火物は熱間荷重により少しづつ収縮されてゆきます。「高温で荷重がかかると物がつぶれてゆく」という比較的イメージしやすい現象かと思います。

ちなみにSiC耐火物の場合は「最高使用温度まで機械的強度は落ちない」という特性と、「焼成雰囲気中でSiCが酸化されることによってSiO2が生成され少しずつ膨張してゆく」という性質から、逆に使われれば使われるほど膨張し寸法は大きくなります。

コージライト質スペーサー・ムライト質スペーサー

コージライト質とムライト質のスペーサーのご紹介です。

上:コージライト質    下:ムライト質
上:コージライト質φ69xL40mm      下:ムライト質φ62xL60mm

上の茶色い方がコージライト(Cordierite)質で、下の白い方がムライト(Mullite)質です。

ヒーターの位置決め・絶縁用のスペーサー等に使用されます。ムライト質の特徴は低膨張率でヒートショックに強く、ムライト質の特徴は耐火度がコージライト質よりも高い点です。それぞれの材質の原料配合、使い方や使用目的等により異なりますが、例えば一般的なコージライト質耐火物は約1200℃以下、ムライト質耐火物は約1300℃まで使えます(アルミナ配合を90%くらいまで上げればMax. 1750℃)。

支柱をSiC棚板の中心に置くとSiC棚板が割れます

棚板は3本の支柱で支えるのが一番安定し良いとされています。2013Dec支柱組み方1blog

 

一方、焼成製品の重さによってSiC棚板が割れたり曲がったりしないようにと、棚板の真ん中にも支柱を置こうとする方が時折いらっしゃいますが、この棚組方法は非常に危険で逆にSiC棚板の割れを引き起こしてしまう可能性が非常に高いです。2013Dec支柱組み方2blog

 

炉内で温度が下がる過程で、熱伝導率の良い板形状のSiC棚板は端の方から比較的早く温度が下がってゆきつつも、棚板中心部分は冷め難い為、最後まで温度が高い状態にあります。一方、支柱はアルミナ・ムライト質でSiCよりも熱伝導率は10倍悪いとも言われており、且つムク形状の為、支柱の方はなかなか温度が下がりません。2013Dec支柱組み方1裏最終

となると下のイメージ写真の通り、蓄熱された支柱がSiC棚板中心部分に接触していると支柱から棚板中心部分へ熱を与え続ける事となり、その結果、ただでさえ元々温度が高い棚板中心部分が更に熱くなってしまいます。2013Dec支柱組み方2裏最終最終

 

SiC棚板含め耐火物が割れる一番大きな原因は温度差=ヒートショック(熱衝撃)ですので、良かれと思って置いた中心の支柱が、逆にSiC棚板に熱的ショックを与える事となり、結果棚板の割れを引き起こしてしまいます。

耐火物の使用にあったっては、1つの物に関してできるだけ温度差が付かない様な設置方法・使用方法が重要になります。

SiCセッター/棚板コーティングの違い

SiCセッター/棚板のコーティングの役割は前回の記事で書かせて頂きましたが、今回はそのコーティングについての補足です。当社SiCセッター/棚板のコーティングには1回目の焼成まで取れないようにする有機バインダーと、焼成後にセッター/棚板に焼き付ける無機バインダーが配合されています。しかしながら他社品には有機バインダーが入っていないような状態の物もあります。

下の写真は某K社販売のSiC棚板ですが、新品の状態で白いコーティングは直ぐに粉々に取れてしまい、運んでいる間にどんどんコーティングが取れて、いざ使おうという時には既にいくらかコーティングが薄くなってしまっています。

他社SiC棚板コーティング
他社SiC棚板新品コーティング脱落

これではちょっと何かに強く当たった部分は簡単にえぐれてしまいます。又、下の写真の通り新品の状態でコーティング面に丸く盛り上がった点が点在してしまっています。

他社SiC棚板コーティング表面状態
他社SiC棚板コーティング表面状態

これを焼成すると中の無機バインダーによって焼成後はこのコーティングの盛り上がりのまま固まってしまい、せっかくの新しい棚板表面も凸凹状態になってしまいます。

この様に同じコーティングでも各社違いがあり、SiC耐火物とコーティング材料の熱膨張率が異なる事から焼成時にコーティングが剥離してしまう危険があったり、それを避けるために焼成後でもかなり粉っぽい配合にすると焼成を重ねる毎にどんどんコーティングが飛んですぐに薄くなってしまったりと、意外にコーティングのノウハウも難しい部分が色々あります。当社はコーティングの材料選定から配合・塗布まで、ベストな状態のコーティングでSiCセッター/棚板をご提供致します。

SiCセッター/棚板のコーティング

(酸化物結合)SiCセッター/棚板表面には、通常片面にコーティングがされております。300x300x10t

これは上に載せる焼成物とSiCセッターが引っ付かないようにする役割を果たします。焼成雰囲気にもよりますが、焼成に使用すると通常SiCセッター表面には少しシリカ(SiO2)が生成され、高温ではネバネバした状態の物ですが冷えるとガラスのように固まり、焼成物がセッターに引っ付いてしまいます。また焼成物の方からも素地(きじ)や釉薬から耐火度の低い成分が溶け出してセッターに付着すると冷めた時に固まり同じくセッターに引っ付きます。

このコーティングは新品の状態ですと有機バインダーで軽く粉状の物が引っ付いているだけですので、硬い物で強くこすったり、水に濡れると剥がれて取れてしまいます

コーティングは1,100℃以上の温度で焼成されて初めて中の無機バインダーが適度に溶けセッターに焼き付く仕組みになっていますので、1,100℃未満(例えば700℃等)で初回焼いてしまうと中の有機バインダーだけ飛んでなくなってしまい、無機バインダーは溶け出さない為、炉から出すとコーティング表面は粉っぽく非常に取れやすい状態になってしまっています。尚その場合、その後そのまま1,100℃以上で再度焼成すればセッターに焼き付きます。

因みに一度1,100℃以上の焼成で焼きついたコーティングはしっかりセッターに固着していますので、その後は低い温度で焼成してもコーティングは取れやすくなったりはしません。

コーティングは離型剤のような役割ですので、固まりすぎてもその役割を果たさず、固まらなさ過ぎても直ぐにコーティングが飛んでなくなってしまうという事になりますので、焼成後は指でこすってかすかに粉っぽいような状態が離型剤の役割を果たしつつ長持ちするコーティングという事になります。

サンドイッチセッター(SiC+アルミナ・ムライト)

SiC+アルミナ・ムライトのサンドイッチセッターのご紹介です。
サンドイッチセッター1

SiCをアルミナ・ムライト質で上下からサンドイッチしたセッターです。
サンドイッチセッターアップ

アルミナ・ムライト耐火物の耐食性と、SiC耐火物の高温強度・耐スポール性とを兼ね備えたセッターになります。フェライト等SiCと反応してしまうワークの焼成にはアルミナ・ムライト質セッターが有効ですが、どうしても耐スポール性能や高温曲げ強度がSiCセッターに比べ弱くなってしまいます。

そこで中心にSiCを挟み込む構造にする事によりアルミナ・ムライト質セッターの耐食性を保ちつつSiC耐火物の高温強度・耐スポール性を利用し弱点を補う事ができます。サンドイッチセッターの最高使用温度は1,450℃です。

SiC棚板コーティングの水濡れによる溶け

SiC棚板(酸化物結合SiC)には通常、製品と棚板が引っ付くのを防止する為コーティングがしてあります。
SiC棚板コーティング

この粉状の白いコーティングは有機バインダーによってSiC棚板に軽く引っ付いているだけで、1,100℃以上で焼成されるとコーティング中の無機バインダーによって初めて棚板にしっかり焼き付く様な配合になっております(因みに、有機バインダーは1回目の焼成過程の数百度で焼けてなくなってしまいます)。

この新品(未焼成)の状態のコーティング面に水がかかるとすぐに水を吸ってしまいます。
SiC棚板コーティング濡れ

水を吸ったコーティングはふやけて軟らかく溶けてしまい、指でこすると下の写真のような状態になります。
SiC棚板コーティング濡れて溶けた状態

因みに一度濡れてしまったコーティングは、乾かした時にめくり上がってはがれたり、焼成時にはがれてしまいます。ですので、特に新品のSiC棚板は水濡れにご注意下さい。尚、逆にコーティングが必要ない場合は、新品時(焼成前)に高圧洗浄機等で水で洗い流せば除去できます。